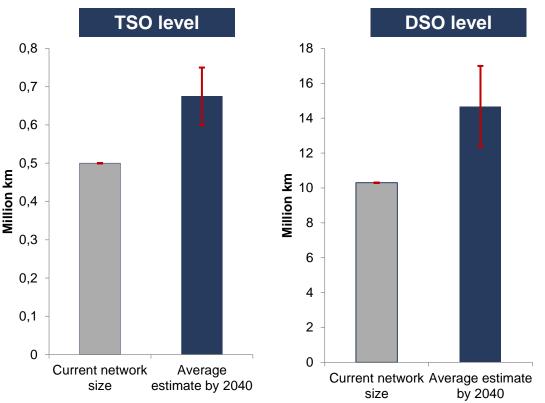


Prospects for innovative power grid technologies Launch event

19 June 2024

CONFIDENTIAL

compasslexecon.com


<u>Context:</u> A considerable expansion of electricity networks is required for the energy transition

A significant expansion of the network is required for the energy transition in Europe, to integrate 2,000 GW¹ of renewables in 2040, compared to around 400 GW today:

- The total current size of the EU grid is 0.5 million km at transmission level and 10.3 million km at distribution level.
- By 2040, transmission grids might need to be expanded by 20-50% to a total length of 0.6-0.8 million km, and distribution by 20-65% to a total length of 12.4-14.7 million km, in the context of the energy transition range based on an extensive review of prospective studies and CL analysis.

The required buildout needs to happen 3 to 20 times faster than past buildout rates, and the delivery capacity of TSOs and DSOs, and related supply chains might be under strain.

- In recent years, annual network built out in Europe has been approximately 500 km/year² at the transmission level and 80,000 km/year³ at the distribution level.
- The buildout required by the energy transition might need to jump to 10 000 km/year on average at transmission level, and 250,000 km/year distribution level, a jump 20 and 3 times, respectively.

2

compasslexecon.com

Opportunity: Innovative Grid Technologies (IGTs)¹ can support the required network buildout

Superpowers:

Innovative Grid Technologies:

|--|

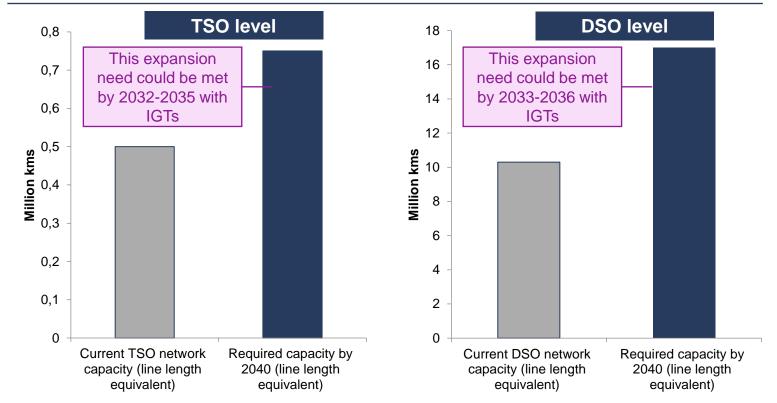
Digital Twin, Flexibility Management Systems

compasslexecon.com

Note: [1] The US term "Grid Enhancing technologies" can also be use to describe technologies that "maximise the transmission of electricity across the existing system through a family of technologies that include sensors, power flow control devices, and analytical tools", according to the DoE (see US DoE (2022)). **IGTs can hence also be referred as GETs+.** this theoretical framework does not provide an exhaustive classification of IGTs, and of their effects. Other technologies and effects could potentially be considered.

Benefit 1: Reinforcing existing electricity infrastructure Assuming a fast deployment, IGTs could increase overall network capacity btw. 20% to 40%, based on inputs from technology experts Caso study

	IGT	Capacity increase achieved example	
 Current electricity infrastructure capacity stands at least at 550 GW in the EU¹ 	Advanced power flow control	5% increase in overall network capacity	
 Case studies from actual application of IGTs demonstrate significantly increased capacity figures 	Advanced conductors	100% increase in capacity of a line	
 Overall, by assuming a fast deployment of several IGTs on the grid, based on discussions with 	Storage as a transmission asset	40% increase in capacity of a line capacity of a line improvement.	
technology experts, a 20% to 40% overall capacity improvement (e.g. on the wider network) by 2040, seems realistic, enabling from approximately 100GW to 200GW of additional capacity.	Dynamic Line Rating	30% increase in capacity of a line would	ork
	Grid Inertia Measurement	Reduced RES curtailment thanks to +30% higher assumed inertia	achievable
	High temperature superconductors	400% to 1000% increase in capacity of a line ²	

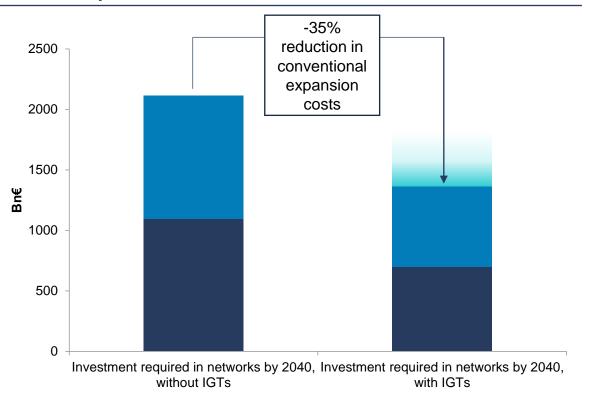

Benefit 2: Faster deployment of grid capacity at system level A conservative 10-20%¹ increase in network capacity through IGTs would already yield major benefits

IGTs – <u>in combination with</u> <u>conventional grid expansion</u> - can support adding the required capacity faster.

By considering a **10% to 20%¹ increase** in the capacity of the existing grid assets achieved by 2030, and by considering **that similar improvements is applied to all new grid assets built in the future**, we see that:

- Transmission grids expansion can be accelerated by 5 to 8 years
- Distribution grids expansion can be accelerated by 4 to 7 years

Comparison of current network size and size required by 2040 in the EU (upper range)



compasslexecon.com Note: [1] To avoid overstating capabilities or underestimating unforeseen challenges, a conservative 10% to 20% (halved) overall increase is used in the rest of the study. [2] The upper range of Confidential 5 network expansion need is considered here to avoid overstating IGTs capabilities

Benefit 3: Reduction in required investments By investing in IGTs in parallel to conventional grid buildout, gross cost savings of 700 Bn€ in conventional expansion might be achieved by 2040

- The required investments in electricity networks, if IGTs are not deployed at scale, might amount to approximately 1000
 Bn€¹ in the transmission network and 1000 Bn€² in the distribution network in Europe by 2040.
- Installing IGTs (with the assumptions described in the previous page) could reduce the need for network buildout by approximately 35% by 2040, and hence achieve overall gross savings of 700 Bn€ in conventional expansion costs. However, this figure doesn't take into account the costs of IGT deployment themselves.
- Nonetheless, these gross benefits may be significantly higher than the costs of deploying the said IGTs – for instance, the US DoE indicates that IGT can indeed achieve an increase in capacity at a lower cost than conventional reinforcements³.

Gross benefits of IGT deployment - Saved investments in network expansion

Conventional expansion at TSO level Conventional expansion at DSO level – IGTs

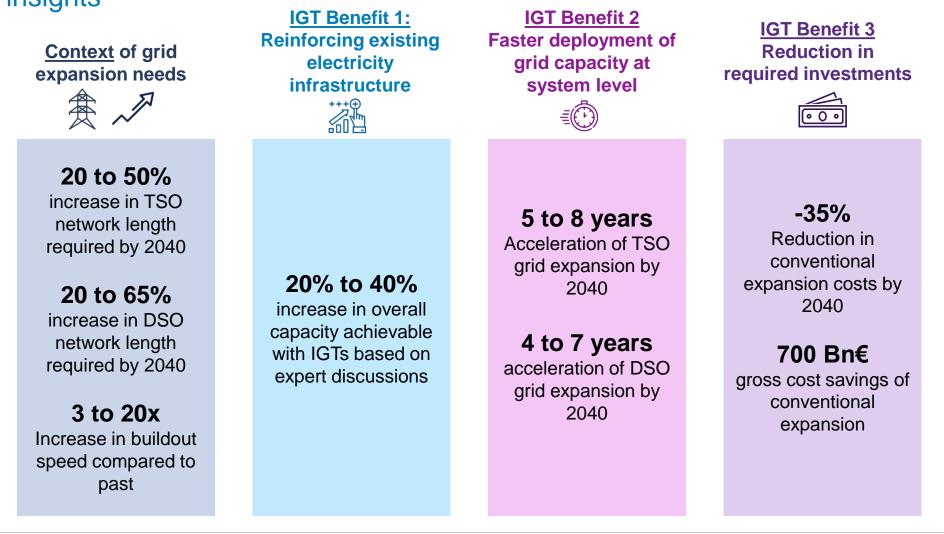
compasslexecon.com

Note: [1] CL estimate, based on the projected cost of onshore network buildout per km of new lines in Germany, Italy and Spain, and the need for network buildout presented in this study [2] 67Bn€/year for EU27+NO according to Eurelectric (2024) Grids for Speed, [3] For instance, for APFC and DLR, see: DoE (2022) Grid-Enhancing Technologies: A Case Study on Ratepayer Impact 6

Despite these substantial benefits IGTs could provide to the energy transition, their deployment is currently hindered by several barriers

Barriers for IGT deployment

	1 Lack of incentives to opt for non-CAPEX intensive solutions	•	Incentive to opt for CAPEX solutions rather than OPEX solutions due to a difference in the regulatory treatment between OPEX and CAPEX.
	2 Insufficient output incentives and incentives for innovation	•	Lack of incentives for network operators to use overall cheaper solutions Lack of incentives for innovations that may cost-efficiently increase output
	3 Investment doctrine and methodologies of network operators	•	The investment doctrine of T/DSOs might include bias towards predetermined solutions to fix the issues identified, rather than adopting a technology-neutral approach to answer system needs.
\mathbf{X}	4 Death-by-pilot risk	•	IGT adoption is hindered by long processes for network companies to trial and then adopt new innovative solutions.
• 0 •	5 Funding schemes' eligibility issues	•	Some of the potentially available funding schemes cannot easily be accessed by IGTs yet, due to eligibility issue of IGTs.


Regulatory solutions exist to remove these barriers, and have already been implemented in some European countries

Barriers for IGT deployment

Examples of best practices and solutions

Lack of incentives to opt for non-CAPEX intensive solutions	 TOTEX regulation Introduction possibility of OPEX increase for network operators
2 Insufficient output incentives and incentives for innovation	 Output-based remuneration, decoupled from CAPEX/OPEX spent
B Investment doctrine and methodologies of network operators	 NOVA principle: grid optimisation has priority over grid reinforcement, which has priority over grid expansion Technology-neutral planning approach, e.g. with CBAs
Death-by-pilot risk	 Lump-sum innovation Funding / WACC premiums Regulatory sandboxes Transfer of best-practices and standards
5 Funding schemes eligibility issues	 Widen eligibility of national and EU-financing schemes to IGTs

Thank you for your attention! Key insights

