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Abstract. A profitable, but potentially socially harmful project is financed by an uninformed

lender inclined to fund socially valuable initiatives. To make more accurate investment decisions,

the lender can buy information about the project type from two (or more) competing certification

providers (raters). We compare two regulatory regimes: a laissez-faire regime, where raters are free

to choose prices and information precision to maximize profits, and a regulated regime where raters

are subject to price oversight by a regulator that maximizes the total value generated by the project.

We show that information precision monotonically increases in price. When the project revenue

features a decreasing Arrow-Pratt index, raters under-invest in information precision, and a price

floor restores effi ciency. Conversely, raters over-invest in precision when the project revenue features

an increasing Arrow-Pratt index. Then a price cap restores effi ciency. No regulation is needed in

the knife-edge case of a constant Arrow-Pratt index. More generally, these findings indicate that, if

misplaced, an indiscriminate imposition of price controls, such as universal price caps or floors, can

significantly reduce value and welfare.
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1 Introduction

In recent years, growing public concern about climate change, resource depletion, and social inequal-

ity has led consumers and investors to demand greater transparency and accountability from firms.

In response, some (but not necessarily all) companies have increasingly prioritized sustainability to

enhance market appeal, limit regulatory scrutiny, and mitigate environmental and social risks.

Environmental, Social, and Governance (ESG) ratings play a central role in this landscape by

providing standardized, quantifiable measures of firms’‘sustainability’performance. These ratings

enable investors to identify sustainability leaders and allocate capital toward firms that promote

environmental protection, social responsibility, and effective governance. As such, ESG ratings

have become a key instrument for stakeholders seeking to support ethical business practices and

sustainable growth.

However, as an information market, the ESG rating industry faces challenges similar to those

long identified in traditional credit rating markets, including conflicts of interest and limited trans-

parency. Regulatory intervention can help address these concerns, particularly when rating agencies’

revenues depend on the firms they rate. In such issuer-pay models, firms may resist paying for un-

favorable ratings, creating incentives for rating inflation.

In principle, these conflicts could be mitigated by decoupling payments from rating outcomes.

In practice, however, monitoring the precise contractual relationships between firms and raters is

diffi cult. In the ESG industry, most providers have therefore adopted a subscriber-pay model, in

which investors or other market participants purchase access to ratings. By shifting revenues away

from rated firms, the subscriber-pay model can reduce conflicts of interest and make rating quality

the primary competitive dimension, potentially improving accuracy and objectivity.

Yet two important questions remain: is moving from issuer-pay to subscriber-pay suffi cient to

ensure effi cient ESG rating markets? Do these markets still require regulation to achieve value-

maximizing outcomes, and if so, when and through which instruments?

Azarmsa and Shapiro (2024) identify one key regulatory concern: insuffi cient specialization

among raters. They argue that welfare is maximized when providers specialize in distinct ESG

dimensions, thereby increasing the total information conveyed. Competitive pressure, however,

may instead induce excessive generalization, reducing informational content in equilibrium.

Our paper examines a different normative dimension. We ask whether, even absent specializa-

tion concerns, market forces can lead to over- or under-provision of information relative to what

maximizes value (welfare).1 The model features an entrepreneur seeking external financing for a

profitable but potentially socially harmful project, an uninformed lender (investor) who values so-

cial impact but cannot observe project type, and two (or more) competing certification providers

(raters) that acquire and sell information about the project’s social value. To generate meaningful

incentives, we assume limited liability and imperfect enforcement: in the event of default, author-

1That is, the sum of all agents’expected payoffs.

1



ities can seize only a fraction of realized revenues, allowing the entrepreneur to divert part of the

returns as private benefits.2

We compare two regulatory regimes: laissez-faire and price regulation. Under laissez-faire,

providers freely choose both prices and information precision. Under price regulation, a regulator

sets prices to maximize total value, while providers adjust precision accordingly. This regulatory fo-

cus on prices reflects established policy practice. Policymakers have long relied on price regulation as

a pragmatic tool in rating and certification markets, where information quality is diffi cult to observe

and therefore hard to regulate directly. In financial markets, for example, oversight of credit rating

agencies in both the EU and the US constrains fees through transparency, proportionality, and non-

discrimination requirements, reflecting concerns that unregulated pricing may distort incentives for

information provision.3 ,4 Similar approaches are used in environmental certification, audit services,

pharmaceutical approval, and professional licensing, where regulators frequently impose fee caps,

fixed fees, or cost-based pricing rules to balance access, accuracy, and market power.5

In the baseline analysis, we focus on equilibria with full market coverage and single-homing,

where the lender purchases information from only one provider. In these equilibria, providers charge

supra-competitive prices reflecting horizontal differentiation, and choose precision by trading off

information costs against increased demand from lenders who favor socially valuable projects. This

tension generates a somewhat natural positive relationship between prices and precision: higher

prices, and thus higher profit margins, support greater investment in information quality.

We then analyze price regulation. We first characterize the value-maximizing level of precision

and compare it to the laissez-faire equilibrium. We show that the relationship between equilibrium

and value-maximizing outcomes is governed by the curvature of the project’s revenue function.

When lenders are not overly biased – so that both project types may be financed – whether regu-

lation calls for higher or lower precision depends on the Arrow—Pratt index of absolute risk aversion

of project revenues with respect to loan size. If absolute risk aversion is decreasing (DARA),
2 If enforcement were perfect, the entrepreneur could not divert funds and would be indifferent between investing

and not investing. If ties are broken in favor of investment, our results are robust; otherwise, ratings become irrelevant.
3For instance, the EU’s Credit Rating Agencies Regulation (EC No 1060/2009) and associated delegated acts

require registered credit rating agencies to disclose and justify their pricing policies and ensure that fees are non-
discriminatory and cost-related, under supervision by the European Securities and Markets Authority (ESMA). This
regulatory framework constrains rating fee practices and serves as a practical precedent for fee oversight in information
markets, even without explicit price caps. Proposed EU regulation of ESG rating activities similarly emphasizes
transparency and supervisory authority over ESG raters’practices

4 In the US, credit rating agencies are regulated by the Securities and Exchange Commission (SEC) as Nationally
Recognized Statistical Rating Organizations (NRSROs) under the Credit Rating Agency Reform Act and the Dodd—
Frank Act. While US regulation does not impose explicit price caps, it constrains rating fees indirectly through exten-
sive disclosure, conflict-of-interest rules, and supervisory oversight of pricing policies. Rating agencies are required to
publicly disclose their fee structures and to demonstrate that fees are not structured in a way that compromises rating
integrity. This regulatory approach reflects the concern that fee-setting practices can affect incentives for information
provision, even when accuracy itself cannot be directly regulated.

5Recent policy proposals for ESG rating providers in the EU follow this tradition, emphasizing fee transparency
and justification as a means to prevent both rent extraction and underinvestment in rating quality. These regula-
tory practices underscore that price instruments are a central – and often preferred – policy lever for correcting
ineffi ciencies in information markets, aligning closely with the mechanisms studied in this paper.
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providers under-invest in precision; if it is increasing (IARA), laissez-faire yields excessive preci-

sion; if it is constant (CARA), no intervention is needed. By contrast, when lenders finance only

socially valuable projects and would not invest without information, equilibrium precision is always

ineffi ciently low.

Since equilibrium precision increases with regulated prices, ineffi ciencies can be corrected through

price floors when precision is insuffi ciently low and price caps when it is excessive. Indiscriminate

price regulation, however, can reduce welfare if it ignores how revenues respond to project scale.

Notably, DARA – often considered empirically plausible – makes price floors particularly rele-

vant.6

We then relax key assumptions to test robustness. Allowing for partial market coverage intro-

duces a new trade-off: higher prices increase precision but reduce coverage by making uninformed

lending more attractive. Similar forces arise under multi-homing, where price increases raise both

the cost and the value of purchasing multiple ratings. While inframarginal lenders always benefit

from higher precision, the effect on marginal lenders is ambiguous.

In a Salop (1979) model with endogenous entry, higher prices both raise profits and increase

certification costs through higher precision. When cost effects dominate, a price floor helps curb

excess entry; when profit effects dominate, a price cap is preferable.

Our results also extend to settings with multiple ESG dimensions, continuous social values, and

enforcement that varies with project scale. Moreover, they hold when private benefits rise with

project size, provided they are concave.

Finally, we contrast our findings with issuer-pay models. Under issuer-pay, providers may supply

uninformative ratings when increased precision reduces entrepreneurial rents, potentially leading

to market collapse. When informative ratings are supplied, precision remains ineffi ciently chosen

because lender utility is not internalized. As a result, optimal regulation under issuer-pay always

requires a price floor.

The remainder of the paper is organized as follows. Section 2 reviews the related literature.

Section 3 presents the baseline model and results. Section 4 explores extensions and robustness.

Section 5 concludes. All proofs are in the Appendix.

2 Related literature

The theoretical literature on ESG ratings is still in its early stages. This lack of development

is partly due to the presumption that the markets for ESG and credit ratings function similarly

and exhibit comparable dynamics. The body of research on credit rating agencies (CRA) is well

6DARA is widely regarded as the most empirically and economically plausible specification for revenue or payoff
functions. It captures the idea that as projects scale up, diversification, learning, and effi ciency gains make marginal
revenues less sensitive to additional investment. By contrast, CARA assumes scale-invariant responsiveness of marginal
revenues, while IARA implies increasing fragility at larger scales – both of which are diffi cult to reconcile with typical
production and investment environments. See, for example, Gollier (2001) for a theoretical and empirical discussion.
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established and has already addressed a number of interesting issues related to the rating inflation

phenomenon, its determinants, competitive and welfare implications – e.g., Bolton et al. (2012),

Bar-Isaac and Shapiro (2013), Bouvard and Levy (2018), Piccolo (2021), and Piccolo and Shapiro

(2022) among many others.

However, recent empirical studies indicate distinct differences between these two markets. Chat-

terji et al. (2016) first highlighted the substantial disagreement among ESG ratings from different

providers– a phenomenon known as ‘rating divergence’. Berg et al. (2022) further confirmed these

findings and decomposed the divergence into components of scope, measurement, and weight. This

disagreement poses significant challenges. It complicates the assessment of ESG performance for

companies, funds, and portfolios, diminishes corporate incentives to enhance ESG performance, and

obstructs the market’s ability to price ESG performance effectively post-assessment.

This body of evidence has been given theoretical context by Azarmsa and Shapiro (2024), who,

to the best of our knowledge, are the first to formally analyze ESG rating markets. While our

paper shares a common focus with theirs, there are also important differences in our approaches.

Specifically, unlike us, they focus on the dynamics of specialization among rating providers, positing

that ESG raters offer ratings by category rather than a mere aggregate. Their findings suggest that

specialization maximizes total welfare (value) by enhancing the quantity of information communi-

cated, thus creating a discrepancy between the market solution when investors significantly value

ESG performance and the optimal value-maximizing solution. The market tends to deliver less in-

formation through generalization, prompting the recommendation that regulators should mandate

or incentivize rating specialization. Our model adds to this debate by determining the conditions

under which a subscriber-pay model ensures value-maximizing information precision, and under

what conditions regulatory intervention is required to achieve this goal. Therefore, our primary

contribution to this literature is identifying mechanisms that could lead regulators interested in

maximizing value (total welfare), to implement either a price floor to address under-investment or a

price cap to curb over-investment. Interestingly, while in the multi-homing equilibrium of Azarmsa

and Shapiro (2024)’s model, price regulation does not matter because raters are not horizontally

differentiated, in our model, price regulation does impact the equilibrium outcome.

Our analysis also broadly builds upon and draws from the growing theoretical literature on infor-

mation markets initiated by Admati and Pfleiderer (1986, 1990) and further explored by researchers

such as Bergemann et al. (2018), Bergemann and Bonatti (2019), Huang, Yang, and Xiong (2018),

Kastl et al. (2022), and Lizzeri (1999), among others. These complex models typically feature a

single (monopolistic) information provider who gathers and sells information about the preferences

of an informed agent to an uninformed principal, who then uses this information to interact with

and extract surplus from the agent. Other researchers, including Balestrieri and Izmalkov (2014),

Celik (2014), Koessler and Skreta (2014), Mylovanov and Tröger (2014), and Piccolo et al. (2015),

adopt an informed-principal perspective, where privately informed sellers decide how much infor-
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mation about a product’s quality to disclose to buyers.7 A similar approach is seen in the growing

literature on Bayesian persuasion, for instance in the works of Rayo and Segal (2010) and Kamenica

and Gentzkow (2011), where, notably, there are no monetary transfers.

Our study emphasizes the novel normative aspects of price regulation in information markets

where there is competition between providers. It highlights the impact of regulatory intervention

in a variety of intriguing scenarios, thus deepening our understanding of the effective governance of

ESG rating practices and information markets more broadly.

3 The baseline model

In this section, we present a stylized model that illustrates the fundamental trade-offs that a public

authority encounters when regulating certification providers who gather and sell information about

the ‘social value’of a business project.

Players and the environment. A risk-neutral entrepreneur (E) needs external capital (x ≥ 0)

to fund a project that generates revenues described by the function f (x), which is increasing,

f ′ (x) > 0, and (weakly) concave, f ′′ (x) ≤ 0.

With probability 1
2 , the project is harmful to society; otherwise, it is socially valuable. The actual

impact of the project – i.e., whether socially harmful or valuable – is private information to E.

This variability is modeled with a binary random variable θ ∈ {0, 1}. By convention, a project with
θ = 0 is classified as socially harmful, whereas a project with θ = 1 is considered socially valuable.

A single ESG dimension, reflects the preference of some investors for an aggregate measure of a

project’s ESG attributes.8

The type of the project does not impact its profitability9, but does influence the preferences of

the representative lender (L), whose utility function is

u (x) , R (x)− x+ µθx.

The function R (x), which we specify below, is the repayment that L obtains from E in exchange

of a loan of size x. The parameter µ ∈ [0, 1) reflects the incremental value that L assigns to the

7For a dynamic model, see Hörner and Skrzypacz (2016).
8 In the online Appendix, we consider both a version of the model where the project type is a continuous random

variable, meaning that its impact on society is not discrete but may vary in extent, and a scenario where the project
features multiple ESG attributes.

9Assuming that the social value of a project is uncorrelated with its revenues seems a neutral approach for sev-
eral reasons. Although there is a growing demand for ethically-produced goods and services, characteristics such as
sustainability practices, fair labor conditions, and robust governance often involve up-front costs and may not imme-
diately translate into financial gains. These practices are typically designed for long-term benefits, such as sustained
company reputation, reduced regulatory risks, and increased consumer loyalty, which may not immediately increase
short-term revenue. Hence, whether or not ethical projects are likely to generate higher or lower revenues than tradi-
tional profit-oriented projects depends on several factors, including consumer responsiveness to these characteristics,
which may vary across industries and countries, the time horizon of the project, and the regulatory regime.
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socially valuable project (or, alternatively, the cost savings when the project is of type 1 instead of

type 0).

For simplicity, we assume that E does not care about the social impact of the project.10 Lenders

generally care more than entrepreneurs about the social value of a project because their financial

exposure is not limited to the direct returns from the project, but also includes the broader societal

impacts that could influence their risk profile. Entrepreneurs are typically focused on the immediate

financial outcomes and their personal stake in the project’s success.11

Information providers. To increase the precision of its investment decisions, L can purchase

information about the project type from two certification providers (raters) that are located at

the end-points of a Hotelling line of length 1. The providers (P0 and P1) operate a subscriber-pay

business model.12 Without loss of generality, P0 is located at 0, while P1 is located at 1. L’s location

is uniformly distributed along the Hotelling line. When located at z ∈ (0, 1), L pays a quadratic

transport cost tz2 if it patronizes P0 and t (1− z)2 if it patronizes P1, where t > 0 is the unit

transport cost or the degree of horizontal differentiation between providers – i.e., a larger t implies

that the certification market is (ceteris paribus) less competitive as L is relatively less willing to

switch from one provider to the other.13

This hypothesis implies that certification providers within a market are not perceived as iden-

tical, but rather as differentiated by investors based on the value of long-term relationships – e.g.,

they may trust or prefer certain providers due to established rapport, familiarity, or prior positive

experiences, making them more inclined to seek ratings or certifications from these providers rather

than from others with whom they have less experience.

Certification providers initially do not have information about the project type but can invest

resources to learn it. Specifically, Pi observes a signal si ∈ {0, 1} about the project type. The
precision (accuracy) αi ∈ [1

2 , 1] of si is an endogenous variable. This signal structure can be

10Assuming that E also cares about the social impact of the project, but to a lesser extent than L, does not alter
the qualitative insights of our results.
11 If a project has negative social implications, such as environmental damage or social harm, it could lead to increased

regulatory scrutiny, reputational risks, or even future liabilities, all of which affect the lender’s risk. Therefore, lenders
tend to have a more vested interest in ensuring that the project not only generates profit but also aligns with societal
interests, as this can influence the long-term financial health of their investments. Entrepreneurs, on the other hand,
may prioritize profitability over the broader social impacts if they are not directly accountable for these consequences.
12 In the Extensions, we also consider an issuer-pay model, where the entrepreneur pays the providers to acquire

and disclose information about the project type.
13We assume quadratic transport costs to ensure interior solutions, which are not always guaranteed under linear

transport costs when the market is not fully covered. For consistency, we maintain this assumption in both the baseline
model with full market coverage – where results are invariant to whether transport costs are linear or quadratic –
and its extension to a partially covered market, where linear transport costs may instead lead to existence issues, as
deviations that attract the entire market are easier to implement.
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represented with the following matrix

si = 1 si = 0

θ = 1 αi 1− αi
θ = 0 1− αi αi

.

When αi = 1
2 , the signal is uninformative. When αi = 1, the signal is fully informative. The cost of

achieving precision αi is c (αi). This cost is increasing, c′ (αi) > 0, suffi ciently convex, c′′ (αi) ≥ k > 0

for every αi ∈
[

1
2 , 1
]
with k large enough, and satisfies the standard Inada conditions

lim
αi→ 1

2

c (αi) = lim
αi→ 1

2

c′ (αi) = 0, lim
αi→1

c′ (αi) = c̄,

with c̄ being suffi ciently large. Using Bayes’rule, the posterior probabilities are

Pr [θ|si = θ, αi] = αi ≥ Pr [θ|si 6= θ, αi] = 1− αi.

The price that Pi charges for its service is pi ≥ 0. To attract L, each provider Pi offers an

information policy ℘i , (αi, pi).

Timing. The timing of the game is as follows.

τ = 0 Providers offer their policies.

τ = 1 L selects a provider, observes a signal realization, updates beliefs, and invests accordingly.

τ = 2 Project revenues materialize.

As in Azarmsa and Shapiro (2024) and, more broadly, in the literature on information markets

(e.g., Bergemann et al., 2015, and Kastl et al., 2018, among many others), we assume that providers

cannot falsify signals or manipulate the precision announced in their policy.

Regulatory environment. We examine and compare two distinct regulatory environments:

• Laissez-faire. In this regime, providers have the autonomy to set both prices and information
precision without regulatory oversight.

• Price-regulation. In this regime, providers are subject to price control mandated by regulation.
Yet, they can adjust information precision in response to the price constraints imposed by the

regulator.

Limited enforcement. To make the problem interesting, we assume that E is protected by

limited liability and appropriates a fraction φ ∈ [0, 1] of the project revenues as private benefits.
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That is, due to limited enforcement, L can seize at most (1− φ) f(x) of the realized revenues in the

event of default.14 The share of seizeable revenues 1 − φ can be interpreted as the probability of
successful law enforcement, which is standardized at the industry level and generally independent

of the specifics of individual default events.15

Since the financial agreement between E and L is not pivotal to the core insights we wish to

convey, we assume that L always gets the highest repayment R (x) = (1− φ) f (x). This may

arise either from an un-modeled competitive mechanism among entrepreneurs or because L sets the

interest rate suffi ciently high to induce default, thereby extracting the entire seizable revenue.16

Equilibrium concept. Since E is privately informed about the project’s type and the game

structure is sequential, the appropriate solution concept is Perfect Bayesian Equilibrium (PBE).

However, since E makes no decisions, this reduces to Subgame Perfect Nash Equilibrium (SPNE). In

the baseline analysis, we focus on a symmetric equilibrium with full market coverage such that both

providers offer a policy ℘? , (p?, α?) and L buys information from one provider (single-homing).17

Payoffs. Before entering the technical details of the equilibrium analysis, it is useful to characterize
the players’ payoffs. Conditional on having observed signal si ∈ {0, 1}, L solves the following

maximization problem

max
x≥0

(1− φ) f (x)− x+ µE [θ|si, αi]x,

for which the first-order condition is

(1− φ) f ′ (x)− 1 + µE [θ|si, αi] = 0 ⇒ x? (si, αi) , ϕ
(

1− µE [θ|si, αi]
1− φ

)
,

with ϕ (·) being defined as the inverse of the project’s marginal revenue f ′ (·).
Essentially, when choosing how much to invest in the project, L behaves as a monopolist and

trades off marginal revenue against the investment cost and the expected benefit associated with

the project being of type 1.

14Limited enforcement is a typical problem in finance, irrespective of the social value of a project, because financial
contracts often depend on a mix of legal frameworks, monitoring mechanisms, and enforcement tools that may not
be fully effective.
15 In the Online Appendix, we also examine the case where the loan size, x, influences the amount of revenues that

can be seized in case of default, and show that our main results remain qualitatively unchanged.
16Notice that this formulation has implications equivalent to equity financing, in which L acquires a share 1− φ of

the project revenue. Hence, the repayment structure need not be interpreted literally as debt, but can also be viewed
as a form of equity financing.
17 In the Extensions, we discuss two additional classes of equilibria: (i) equilibria with partial market coverage, and

(ii) equilibria with multi-homing.
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L’s expected payoff when it is located at z ∈ (0, 1) and patronizes Pi is, therefore,

u (℘i) ,
∑
θ

Pr [θ]
∑
si

Pr [si|θ] [(1− φ) f (x? (si, αi))− x? (si, αi) (1− µθ)]− pi − tdi

=
1

2

∑
si

[(1− φ) f (x? (si, αi))− x? (si, αi)] +
µ

2

∑
si

Pr [θ = 1|si]x? (si, αi)︸ ︷︷ ︸
,Λ(αi)

− pi − tdi

with di = z2 if i = 0 and di = (1− z)2 if i = 1.

Letting qi (℘0, ℘1) ∈ (0, 1) be the probability that L patronizes Pi, the expected profit of Pi is

πi (℘i) , qi (℘0, ℘1) pi − c (αi) .

That is, the difference between the expected revenue and the cost of providing precision αi.

The project’s expected value (total welfare) is measured as the sum of all players’ expected

payoffs.18 The price of the rating is a pure transfer, so it is welfare-neutral and does not enter the

formula. Assuming that the market is fully covered, that each provider is patronized with probability

qi (℘0, ℘1), and that the indifferent lender between P0 and P1 is located at z (℘0, ℘1) ∈ (0, 1), the

expected value (total welfare) is

V (α) ,
∑
θ=0,1

Pr [θ]
∑
i=0,1

qi (℘0, ℘1)
∑
si=0,1

Pr [si|θ, αi] [(1− φ) f (x? (si, αi))− x? (si, αi) (1− µθ)]︸ ︷︷ ︸
L’s (expected) utility before prices and transport costs

+
∑
θ=0,1

Pr [θ]
∑
i=0,1

qi (℘0, ℘1)
∑
si=0,1

Pr [si|θ, αi]φf (x? (si, αi))︸ ︷︷ ︸
E’s (expected) repayment

−
∑
i=0,1

c (αi)︸ ︷︷ ︸
Information costs

− t
[∫ z(℘0,℘1)

0
z2dz +

∫ 1

z(℘0,℘1)
(1− z)2 dz

]
︸ ︷︷ ︸

Transport costs

.

In a symmetric equilibrium, where both providers offer the same information policy, each provider

is patronized with probability 1
2 and the transport cost is is

t
12 .

Technical assumptions. As a technical requirement, we assume that f (·) has bounded third-
order derivatives, ensuring the existence of equilibria with interior solutions both in the laissez-faire

18We do not consider any additional social costs related to implementing a socially harmful project. Introducing such
costs would naturally shift value maximization toward requiring more accuracy than what is present in equilibrium,
potentially skewing the results toward a price floor. This would occur because, to mitigate social harm, regulators
would prioritize higher accuracy compared to information providers, which would, in turn, lead value maximization
to set higher prices than those emerging at equilibrium.
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regime and under regulated prices (see the Appendix). We assume that L prefers to give a positive

loan amount to both project types – i.e.,

(1− φ)f ′(0)− 1 > 0 ⇒ φ < φ , 1− 1

f ′ (0)
,

with f ′ (0) > 1. At the end of the analysis, we discuss what would happen when L is unwilling to

fund a project that is known with certainty to be of type θ = 0.

The no-certification benchmark. Suppose that there are no certification providers. L bases its
investment decisions on the prior only, offers a loan of size

x̂ , x?(0, 1

2
) = x?(1,

1

2
),

and earns a payoff

û , (1− φ) f (x̂)− (1− µE [θ]) x̂.

The hypothesis that φ < φ, together with the above Inada conditions, guarantee that û ≥ 0. In a

remark, at the end of the analysis, we explain how results change when û < 0.

The perfect-competition benchmark. Under perfect competition (t = 0), it is evident that

prices are zero, and certification signals become uninformative, as providers would have no incentive

to differentiate their services: an underinvestment problem. To increase accuracy, the regulator

would then impose a price floor, stimulating competition based on accuracy rather than price.

Therefore, in the remainder of the paper, we assume that t is suffi ciently large to ensure that

accuracy remains positive so to capture both the case of under- and overinvestment in accuracy.

Notably, the case of monopoly arises when t is suffi ciently high, which is explored in the Extensions

where we consider equilibria in which the market is not fully covered.

3.1 Single-homing equilibrium with full market coverage

We first determine some intuitive properties of L’s investment decision.

Lemma 1 L’s optimal investment is such that

x? (1, αi) ≥ x? (0, αi) > 0,

with equality only at αi = 1
2 . Furthermore, x

? (1, αi) is increasing in αi, and x? (0, αi) is decreasing

in αi.

As intuition suggests, L is more inclined to finance the project when it receives positive news

about its type, and the more precise the rating, the greater its effect.19

19 In the Appendix, we determine the conditions under which purchasing both ratings is not optimal.
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We can now proceed to characterize L’s demand for certification. Suppose that the providers

offer policies ℘0 = (α0, p0) and ℘1 = (α1, p1). Let

λ (si, αi) , (1− φ)f (x? (si, αi))− x? (si, αi) + µPr [θ = 1|si, αi]x? (si, αi) .

L is indifferent between the two providers when it is located at

z (℘0, ℘1) , 1

2
+
p1 − p0

2t
+

∑
s0
λ (s0, α0)−

∑
s1
λ (s1, α1)

4t
,

which yields the probability with which P0 is patronized. Clearly, with full market coverage, 1 −
z (℘0, ℘1) is the probability with which L patronizes P1.

Equilibrium with laissez-faire. Each provider devises its certification policy to maximize ex-
pected profits, assuming that its competitor adheres to the equilibrium policy ℘?. Focus on P0

without loss of generality. It solves the following maximization problem

max
℘0∈R+×[ 12 ,1]

z (℘0, ℘
?) p0 − c (α0) .

In an interior solution, the first-order condition with respect to p0 is

∂z (℘0, ℘
?)

∂p0
p1︸ ︷︷ ︸

Volume effect (−)

+ z (℘0, ℘
?)︸ ︷︷ ︸

Margin effect (+)

= 0. (1)

with
∂z (℘0, ℘

?)

∂p0
= − 1

2t
< 0.

Equation (1) reflects the standard trade-off between volume and profit margin. Conditional on the

probability of being patronized, increasing p0 yields P0 a higher profit margin. However, a higher

p0 also induces a lower probability of being patronized. In a symmetric equilibrium, this trade-off

yields the standard Hotelling pricing rule p? = t.

The first-order condition with respect to α0 is

∂z (℘0, ℘
?)

∂α0
p0 − c′ (α0) = 0, (2)

where, by the Envelope Theorem, we have

∂z (℘0, ℘
?)

∂α0
= µ

x? (1, α0)− x? (0, α0)

4t
> 0.

All else being equal, policies securing higher precision are more likely to attract L, because its utility

function is increasing with the project type.
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For a given price p0, let α̂ (p0) be the solution in α0 of (2). The following then holds

Lemma 2 α̂ (p0) is increasing in p0, and is such that limp0→0 α̂ (p0) = 1
2 .

Since demand for certification increases with precision, a higher margin (represented by p0 since

marginal costs have been normalized to zero) encourages providers to offer greater signal precision

– i.e., price and precision are complements.

Substituting p? = t into (2), we can establish the following.

Proposition 1 Absent regulatory oversight, in a symmetric equilibrium with single-homing and full
market coverage, both providers charge p? = t and supply information precision α? ∈ (0.5, 1) that is

the unique solution of

µ
x? (1, α?)− x? (0, α?)

4
= c′ (α?) ,

with α? being increasing in µ and decreasing in φ.

As intuition suggests, in an equilibrium with full market coverage and single-homing, both

providers price according to the standard Hotelling rule, resulting in higher prices as the degree of

differentiation between them increases. Furthermore, they provide informative signals in equilib-

rium.20 The precision of these signals increases with the share of profits 1 − φ that L can claim
in the event of default. Clearly, this precision intensifies with the weight µ that L assigns to the

project type. In words, the greater the importance that L assigns to the project type, the more it

is willing to pay for precision, thereby inducing providers to supply more accurate ratings.

Price regulation. Suppose now that providers’ price is set by a regulator whose objective is

value maximization. Since prices are just a monetary transfer, in a symmetric equilibrium with full

market coverage, expected total welfare depends only on the precision set by providers. Let p be

the price mandated by the regulator. Both providers set the same level of precision α̂ (p) that solves

µ
x? (1, α)− x? (0, α)

4t
p = c′ (α) ,

with α̂ (p) being increasing in p.

The monotonic relationship between precision and price allows us to simplify the regulator’s

problem and proceed as if it could directly set α.21 Notice that transport costs do not depend on α

20 In the proof of the proposition, we derive suffi cient conditions for the existence of the equilibrium.
21Having characterized the level of precision that maximizes the project’s expected value, say α??, we will then

recover the optimal regulated price as

p?? = α̂−1 (α??) , 4tc′ (α??))

µ[x? (1, α??)− x? (0, α??)]
.
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with full market coverage. Hence, maximizing the value created by the investment requires solving

max
α∈[ 12 ,1]

V (α) , max
α∈[ 12 ,1]

1

2

∑
s=0,1

[f (x? (s, α))− x? (s, α)] +
µ

2

∑
s=0,1

Pr [s|θ = 1]x? (s, α)− 2c (α) ,

Essentially, the value created by the investment can be decomposed into three intuitive com-

ponents: the monetary surplus generated by the project (revenue net of the investment cost), the

effect of the project type on L’s utility, and the cost of gathering information.

Notably, in contrast to the equilibrium analysis, the regulator internalizes E’s utility. Therefore,

the level of precision that maximizes value also accounts for the impact of greater precision on E’s

utility across the different realizations of the ratings – i.e., a larger α reduces E’s profit in state

s = 0 and increases it in state s = 1.

To gain insights on the forces that shape value maximization, define

ζ (x) , −d ln f ′(x)

dx
= −f

′′ (x)

f ′ (x)
≥ 0.

This ratio corresponds to the Arrow—Pratt index of absolute risk aversion of the project revenue

function, and measures the curvature of this function. The derivative of this index

ζ ′(x) = −d
2 ln f ′(x)

dx2
,

measures how the curvature of the revenue function changes with the scale of the project. A negative

derivative (ζ ′(x) < 0 for all x ≥ 0) corresponds to decreasing absolute risk aversion (DARA):

marginal revenue becomes less sensitive to project scale as the scale increases. A positive derivative

(ζ ′(x) > 0 for all x ≥ 0) corresponds to increasing absolute risk aversion (IARA): marginal revenue

becomes more sensitive to scale at higher levels. When ζ ′(x) = 0 for all x ≥ 0, absolute risk aversion

is constant (CARA), implying that marginal revenue declines at a constant rate.

By the Envelope Theorem, we obtain:

V ′ (α) = µ
x? (1, α)− x? (0, α)

2
− 2c′ (α) +

φµ

2 (1− φ)

[
1

ζ (x? (1, α))
− 1

ζ (x? (0, α))

]
. (3)

Let α?? be the unique solution of V ′ (α) = 0.22 The following holds.

Proposition 2 Suppose that φ > 0. Then, if ζ ′ (·) < 0 for all x ≥ 0, the level of precision

that maximizes value is higher than the level of precision that the providers set in the laissez-faire

equilibrium – i.e., α?? > α?. By contrast, if ζ ′ (·) > 0 for all x ≥ 0 the level of precision that

maximizes the project’s value is lower than the level of precision that the providers set in the laissez-

faire equilibrium – i.e., α?? < α?. The optimal regulated pice is p?? = α̂−1 (α??) .

22 In the Appendix, we derive suffi cient conditions for V ′′ (α) < 0.
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If, instead, φ = 0 or ζ ′ (·) = 0 for all x ≥ 0, the level of precision that maximizes value is the

same as the level of precision set in the laissez-faire equilibrium – i.e., α?? = α?, and thus p?? = p?.

This proposition demonstrates that whether value maximization mandates a higher or lower

level of precision than that emerging in an equilibrium with laissez-faire depends on how rapidly

the marginal revenue varies with the scale of the loan. When the marginal revenue generated by

the project becomes less responsive to an unit increase in capital at higher scales – e.g., because of

limited scale economies – providers under-invest in precision compared to what value maximization

would mandate. Conversely, value maximization calls for lower precision than that emerging under

laissez-faire when the marginal revenue is more responsive to a unit increase in capital at higher

scales – e.g., because of strong scale economies.

The intuition is that providers do not fully internalize the effect of their investment in accuracy

on L’s expected utility. Greater accuracy increases investment in state s = 1 and reduces it in

state s = 0. How these changes affect L’s expected utility depends on how the curvature of the

revenue function varies with project scale, namely, on whether revenues respond more strongly to the

increase in the loan in state s = 1 than to the reduction in the loan in state s = 0. When ζ ′ (·) < 0

for every x ≥ 0, by increasing the loan in state s = 1, increased precision mitigates the extent of

diminishing returns and enhances the revenue of a type-1 project more than it reduces that of a

type-0 project. Conversely, when ζ ′ (·) > 0 for every x ≥ 0, increased precision disproportionately

penalizes a type-0 project relative to the benefits it brings to a type-1 project.

The knife-edge case arises when the revenue function has a constant concavity index, ζ ′ (x) = 0

for every x ≥ 0. In this case, the degree of decreasing returns to scale is invariant to loan size, so

the effect of increased precision on the revenues of the two project types exactly offsets. Hence,

the value-maximizing level of precision coincides with the equilibrium level of precision, and no

regulation is needed.

The next proposition shows how the discrepancy between the precision chosen by the regulator

and that arising in a laissez-faire equilibrium is reflected in the optimal regulated price.

Proposition 3 Suppose that φ > 0. Value maximization requires a binding price floor (resp. a

price cap) if ζ ′ (·) < 0 for all x ≥ 0 (resp. >). By contrast, if ζ (·) is constant or φ = 0, the

equilibrium with laissez-faire maximizes expected value, so price regulation is unnecessary.

The difference p??−p? is increasing in t when p?? > p? and decreasing in t when p?? < p? – i.e.,

market power magnifies the need for regulatory intervention regardless of the type of intervention.

In words, when the market equilibrium exhibits an under-supply of precision, the regulator

can correct this ineffi ciency by imposing an appropriately chosen price floor. By contrast, when

providers supply excessive precision in equilibrium, an appropriately designed price cap restores

effi ciency. As a result, the indiscriminate use of price caps or price floors may reduce welfare in the
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absence of information about the concavity of the project’s revenue function – or, more concretely,

about the nature and magnitude of the associated scale economies.

Moreover, an increase in product differentiation – that is, stronger market power – tends to

widen the gap between value-maximizing and equilibrium outcomes. Greater market power reduces

the extent to which providers internalize E’s welfare in their decisions, thereby amplifying the

ineffi ciency identified above.

Remark. So far, we have assumed that L invests at the prior since û ≥ 0 – i.e., absent information,

it prefers to finance the project. Suppose now that this is no longer the case because φ is suffi ciently

large. This implies, a fortiori, that L does not invest upon receiving bad news (si = 0). In this case,

it is straightforward to show that a price floor is unambiguously optimal from a value-maximization

perspective, since x? (0, α) = 0.

4 Extensions

To test the robustness of the baseline results and explore additional aspects of ESG ratings reg-

ulation, this section relaxes several key assumptions of the model and extends it along multiple

dimensions. In particular, we consider partially covered markets, the possibility that L purchases

multiple ratings, and competition among multiple providers with endogenous entry. To further

relate our findings to the traditional rating-agency literature, we also introduce an issuer-pay model

in which it is E rather than L, who pays for the rating.

Additional extensions – including projects with multiple dimensions, a continuous type space,

and enforcement regimes that depend on project scale – are developed in the online Appendix.

4.1 Equilibria with a partially covered market

In this section, we consider single-homing equilibria with partial market coverage – i.e., the case

where there are two local monopolies at the extremes of the Hotelling line. In such an equilibrium,

L decides with positive probability not to purchase information.23

Consider a symmetric equilibrium in which both providers offer a policy ℘? , (p?, α?), but

assume that when L is located in the interval (z?, 1− z?), with z? ∈
(
0, 1

2

)
, it decides not to buy

information and invests based only on the prior. A lender located below the threshold z? buys ℘?

from P0, and a lender located above 1− z? buys from P1. As before, focus on P0 and assume that

P1 sticks to the equilibrium.

23Of course, we need to ensure that when L prefers not to be informed rather than buying only one rating, it is
also unwilling to buy both ratings (see the Appendix). Intuitively, this is easy, because the marginal informativeness
of the second rating is less than that of the first, both ratings cost the same in a symmetric equilibrium, and L first
buys from the closer ratings provider, so buying the second rating requires a greater transport cost.
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A lender who patronizes provider P0 obtains expected utility

u? (℘0) , Λ (α0)− p0 − tz2,

with

Λ (α0) , 1

2

∑
s0=0,1

λ (s0, α0) .

The location at which L is indifferent between patronizing P0 and not buying a rating is

z? (℘0) ,
√

Λ (α0)− û− p0

t
,

which is also the probability with which L patronizes provider P0. Hence, P0’s maximization problem

is

max
℘0∈R+×[ 12 ,1]

z? (℘0) p0 − c (α0) .

In an interior solution, the first-order conditions with respect to p0 and α0 yield, respectively,

p0 (α0) =
2

3
(Λ (α0)− û) , (4)

µ
x? (1, α0)− x? (0, α0)

2

p0

2
√
t
√

Λ (α0)− û− p0

− c′ (α0) = 0, (5)

which mirrors the trade-off identified in the baseline model, with the caveat that here the market

is not fully covered – i.e., an increase in p0, expands the region of parameters where L does not

purchase information. Let α0 (p0) be the solution of (5). Since Λ (α0) > û for every α0 >
1
2 , the

following holds.

Proposition 4 The function p0 (α0) is increasing in α0, and α0 (p0) is increasing in p0. Moreover,

in a symmetric equilibrium with partial market coverage, each provider offers a policy ℘? such that

p? =
2

3
(Λ (α?)− û) ,

µ
x? (1, α?)− x? (0, α?)

2

√
Λ (α?)− û

3t
= c′ (α?) .

With probability 1− 2z?, L decides not to buy information and invests only based on the prior (i.e.,

x̂).

In the equilibrium with partial market coverage, the level of precision increases with the price, as

in the baseline model. However, unlike in the baseline scenario, an equilibrium where the market is

not fully covered features a price that increases with precision. The explanation is straightforward:
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in this equilibrium, the price must accurately mirror the lender’s willingness to purchase information

net of their outside option (i.e., the utility of investing based only on priors).24

Suppose now that the regulator can control the providers’price and sets it at p. The providers

will set accuracy α (p), which increases in p and is determined by the solution of the first-order

condition

µ
x? (1, α)− x? (0, α)

2

p

2
√
t
√

Λ (α)− û− p
− c′ (α) = 0. (6)

Let

z? (p) ,
√

Λ (α (p))− û− p
t

.

We assume that z? (p) ≤ 1
2 and verify it later. As before, let V (p) denote the expected value created

by the investment. On each half of the Hotelling line, we then have

V (p)

2
,
∫ z?(p)

0

[
Λ (α (p))− tz2

]
dz+

∫ 1
2

z?(p)
ûdz+

∫ z?(p)

0

1

2

∑
s=0,1

φf (x? (s, α (p))) dz+

∫ 1
2

z?(p)
φf (x̂) dz−c (α (p)) ,

We can thus state the following.

Proposition 5 With partial market coverage and single-homing, the regulator sets a price higher
than in the equilibrium with laissez-faire if and only if

φ

1

2

∑
s=0,1

f (x? (s, α?))− f (x̂)


︸ ︷︷ ︸

Investment effi ciency (+)

× dz? (p?)

dp︸ ︷︷ ︸
Marginal type (?)

+ Λ′ (α?)α′ (p?) z? (p?)︸ ︷︷ ︸
Inframarginal types (+)

+
φµ

2(1− φ)

[
1

ζ (x? (1, α?))
− 1

ζ (x? (0, α?))

]
α′ (p?) z? (p?)︸ ︷︷ ︸

Baseline eff ect (?)

> 0.

When the market is only partially covered, the regulator faces a more complex trade-off. In

addition to internalizing the E’s expected profit as in the baseline analysis, the regulator must now

also consider how an increased price affects market coverage. Specifically, setting a price above

the equilibrium level introduces three new effects. First, it diminishes market coverage, because

it makes the option of investing based solely on prior information relatively more attractive to L,

thereby reducing investment effi ciency as reflected by the positive term

1

2

∑
s=0,1

f (x? (s, α?))− f (x̂) > 0.

Second, a higher price enhances precision, which positively affects the marginal lender – i.e., the

24 In the proof of the proposition we provide suffi cient conditions under which the equilibrium exists.
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type that is indifferent between acquiring the rating and not. These two effects are reflected by the

impact of p on market coverage – i.e., simple algebra shows that

dz? (p)

dp
=

Λ′(α(p))α′(p)− 1

2tz? (p)
, (7)

where

Λ′ (α) = µ
x? (1, α)− x? (0, α)

2
> 0.

Hence, the sign of (7) is ambiguous. The first term in the numerator captures the benefit of in-

creased accuracy induced by a higher price, which ceteris paribus expands market coverage and thus

improves effi ciency. The second term reflects the negative effect of a higher price on coverage, which

reduces effi ciency by inducing E to rely more frequently on prior beliefs when making investment

decisions.

Third, since the market is not fully covered, by increasing precision, a higher price also increases

the utility of the inframarginal types – i.e., all lender types (locations) who were buying information

before and continue to do so after the price increase.

The net effect is therefore ambiguous and depends on the specific functional form of the revenue

function. Even under a CARA specification, the sign of the difference between equilibrium and

value-maximizing precision is ambiguous and hinges on the relative strength of the forces described

above.

4.2 Equilibrium with multi-homing

In this section, we construct an equilibrium with multi-homing. Given the complexity of the analysis,

we focus on the knife-edge case φ = 0, which would imply no regulation under single-homing. This

simplification allows us to isolate the key forces that drive optimal regulation in a multi-homing

equilibrium. To this purpose, we also assume that L does not invest at the prior – i.e.,

f ′ (0)− 1 <
µ

2
, (8)

That is, if the two signals have the same precision, L does not invest whenever it receives at least one

bad signal (see below for further discussion). The remainder of the game follows the baseline model,

with the additional assumption that providers cannot price-discriminate based on the number of

ratings the lender purchases (equivalently, on whether it also buys a rating from the rival provider).

For expositional simplicity, we further assume linear transport costs, without loss of general insights.

Consider a symmetric equilibrium with the following features:

(i) Both providers offer ℘? , (p?, α?).

(ii) If L is located near the middle of the Hotelling line, then it buys information from both

providers.
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(iii) If L is located close to Pi, then it only buys information from Pi.

As before, focus on P0’s strategy assuming that P1 offers the equilibrium policy ℘?. Before

describing the providers’demand functions, it is useful to define L’s investment decision when it buys

both ratings.25 Suppose that L has observed signals (s0, s1), it solves the following maximization

problem

max
x≥0

f(x)− x+ µxE [θ|s0, s1, α0, α
?] ,

where E [θ|s0, s1, α0, α
?] = Pr [θ = 1|s0, s1, α0, α

?] and, by Bayes’rule,

Pr [θ = 1|1, 1, α0, α
?] =

α0α
?

α0α? + (1− α0)(1− α?) , Pr [θ = 1|0, 1, α0, α
?] =

(1− α0)α?

(1− α0)α? + α0 (1− α?) ,

Pr [θ = 1|1, 0, α0, α
?] =

α0(1− α?)
α0(1− α?) + (1− α0)α?

, Pr [θ = 1|0, 0, α0, α
?] =

(1− α0)(1− α?)
(1− α0)(1− α?) + α0α?

.

In an interior solution, L’s investment decision is

x?(s0, s1, α0, α
?) = ϕ (1− µPr [θ = 1|s0, s1, α0, α

?]) ,

where ϕ (·) is the inverse of f ′ (·), as in the baseline model.
Ignoring rating fees and transport costs, the expected benefit to L of acquiring two ratings is

Λ (α0, α
?) ,

∑
s0,s1

Pr(s0, s1)[f(x?(s0, s1, α0, α
?))− x?(s0, s1, α0, α

?)] +

µ
∑
s0,s1

Pr(s0, s1) Pr [θ = 1|s0, s1, α0, α
?]x?(s0, s1, α0, α

?),

and the benefit of acquiring a single rating (say from Pi) is

Λ (αi) ,
1

2
[f(x?(1, αi))− x?(1, αi)] +

µ

2
Pr [θ = 1|1, αi]x?(1, αi).

The following then holds.

Lemma 3 Abstracting from rating fees and transport costs, L prefers to get more than one infor-

mative rating – i.e.,

Λ (α0, α
?) ≥ max {Λ (α0) ,Λ (α?)} ,

Furthermore, in a symmetric equilibrium with α? > 1
2 , when L purchases both ratings, investment

occurs if and only if it observes two good signals.

The intuition is simple. L benefits from more precise information. Hence, ceteris paribus, he

prefers to get more than one informative rating. The fact that, with multi-homing, the investment
25 If L buys only one rating the investment decision is as in the baseline model.
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takes place only in state (1, 1) follows directly from the hypothesis that at the prior the lender

refrains from financing the entrepreneur.

Equipped with this characterization, we can now turn to define the marginal types. Consider

first the location z− at which L is indifferent between buying only from P0 and buying from both

providers. L’s expected utility from multi-homing is

u (α0, α
?, p0, p

?, z) = Λ (α0, α
?)− p0 − p? − t,

while its utility when buying only from P0 is

u (α0, p0, z) = Λ (α0)− p0 − tz.

The indifferent type is, therefore,

z− (α0, α
?, p?) , 1− Λ (α0, α

?)− Λ (α0)− p?
t

.

Consider now type z+ (·) that is indifferent between purchasing a rating from P1 only and purchasing

ratings from both providers. We have

z+ (α0, α
?, p0) , Λ (α0, α

?)− Λ (α?)− p0

t
,

which is decreasing in p0, since a higher price for P0’s rating reduces the range of parameters over

which L chooses to multi-home. Assuming that

0 ≤ z− (·) ≤ 1

2
≤ z+ (·) ≤ 1,

which will be verified later, P0’s maximization problem is

max
℘0∈R+×[ 12 ,1]

z+ (α0, α
?, p0) p0 − c (α0) .

Since providers cannot price-discriminate based on the number of ratings that L purchases,

the relevant demand margin is determined by the marginal lender farthest from each provider

who chooses to multi-home. This margin reflects the interaction between pricing and multi-homing

behavior. In a market with competing raters, the decision of the marginal lender – who is indifferent

between purchasing one rating or both – shapes each provider’s demand. As the price charged by

P0 increases, the likelihood that the lender multi-homes declines, since, in the candidate equilibrium,

L is more likely to purchase only the rival’s rating.

Assuming the existence of an interior solution, the first-order conditions with respect to p0 and
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α0 are, respectively,

∂z+ (α0, α
?, p0)

∂p0
p0 + z+ (α0, α

?, p0) = 0 ⇒ −1

t
p0 + z+ (α0, α

?, p0) = 0,

and
∂z+ (α0, α

?, p0)

∂α0
p0 − c′ (α0) = 0 ⇒ 1

t

∂Λ (α0, α
?)

∂α0
p0 = c′ (α0) . (9)

Strict concavity of the profit function implies that the function α (p0) solving (9) is increasing in

p0, as in the baseline model. Hence, we can state the following.

Proposition 6 Suppose that a symmetric equilibrium in which, when located around the center of

the Hotelling line, L buys information from both providers, exists. Then, the equilibrium price is

p? =
Λ (α?, α?)− Λ (α?)

2
> 0,

and the equilibrium precision α? solves

1

t

[
2α? − 1

2
[f(x?(1, 1, α0, α

?))− x?(1, 1, α0, α
?)] +

µα?

2
x?(1, 1, α0, α

?)

]
Λ (α?, α?)− Λ (α?)

2
= c′ (α0)

with

Λ (α?, α?) =
α?2 + (1− α?)2

2
[f(x?(1, 1, α?, α?))− x?(1, 1, α?, α?)] +

µα?2

2
x?(1, 1, α?, α?)

and

z?+ , 1− z?− =
Λ (α?, α?)− Λ (α?)

2t
.

In an equilibrium in which L sometimes purchases two ratings, the price charged by providers

reflects the difference between L’s utility from acquiring both ratings and its utility from acquiring

only one rating.26

Consider now value maximization. Following the logic adopted in the baseline model, let α (p) be

the function that solves the first-order condition (9) for a given regulated price p, with α (p?) = α?.

Suppose that this price is such that L still prefers to multi-home when located around the center

of the Hotelling line, while it prefers to single-home when located at the extremes of the segment.

Define ĉ (p) , c (α (p)),

z− (p) , 1− Λ (α (p) , α (p))− Λ (α (p))− p
t

,

26 In the proof of the proposition we show that such an equilibrium exists if and only if

Λ (α?, α?)− Λ (α?)

2
< t < Λ (α?, α?)− Λ (α?) .
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and

z+ (p) , Λ (α (p) , α (p))− Λ (α (p))− p
t

,

with ∆z (p) , z+ (p)− z− (p). Furthermore, denote L’s expected benefit from one rating by

Λ1 (p) , 1

2
[f (x? (1, α (p)))− x? (1, α (p))] +

µ

2
Pr [θ = 1|1, α (p)]x? (1, α (p)) ,

and from two ratings by

Λ2 (p) =
α2(p) + (1− α(p))2

2
[f(x?(1, 1, α(p), α(p)))−x?(1, 1, α(p), α(p))]+

µα2(p)

2
x?(1, 1, α(p), α(p))

Total expected value is

V (p) ,
∫ z−(p)

0
(Λ1 (p)− tz) dz +

∫ z+(α)

z−(α)
(Λ2 (p)− t) dz +

∫ 1

z+(α)
(Λ1 (p)− t (1− z)) dz − 2ĉ (p) .

Differentiating with respect to p, and evaluating at the laissez-faire equilibrium point p? and α?, we

can state the following.

Proposition 7 Suppose that, when located around the middle of the Hotelling line, L multi-homes.
Then, value maximization requires a price floor if and only if

2
(
1− z?+

)
µx? (1, α?)α′ (p?) +

(
2z?+ − 1

)
[2α? − 1][f(x? (1, 1, α?, α?))− x? (1, 1, α?, α?)]α′?)︸ ︷︷ ︸

Inframarginal types

> 2
p?

t

[
µx? (1, α?)α′ (p?) + 2

]
− µα?x? (1, 1, α?, α?)α′?)︸ ︷︷ ︸ .

Marginal type

This proposition shows that allowing for multi-homing introduces two opposing forces relative

to single-homing equilibria. A higher price reduces multi-homing incentives for marginal lenders, as

multi-homing becomes more expensive and single-homing more attractive due to higher equilibrium

precision. Conversely, higher prices benefit inframarginal lenders by increasing precision while

leaving their purchasing decisions unchanged. While the inframarginal effect is always positive, the

marginal effect is ambiguous; if negative, a price floor is optimal, whereas if positive, the balance of

effects may justify either a price floor or a price cap.

4.3 More than two certification providers

We now consider the Salop (1979)’s circular city version of the baseline model. There are N ≥ 2

symmetric information providers positioned equidistantly around a circle of circumference 1. We

begin with the case where N is exogenous, and discuss the implications of free entry at the end
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of the section. In both cases, for brevity, we restrict attention to single-homing equilibria and full

market coverage.

To simplify exposition, assume again that the transport cost is linear. Hence, L is indifferent

between the two nearest providers Pi and Pj if and only if it is located at

z =
1

2N
+

Λ (αi)− pi − (Λ (αj)− pj)
2t

,

where pi (resp. pj) is the rating price charged by Pi (resp. Pj).

Letting pi−1 and pi+1 be the prices charged by the providers located to the left and to the right

of Pi respectively, and assuming interior solutions, the probability that Pi is patronized is

qi (·) =
1

N
+
pi−1 − Λ (αi−1) + pi+1 − Λ (αi+1) + 2 (Λ (αi)− pi)

2t
,

Consider an equilibrium in which every provider offers ℘? , (p?, α?). The above probability simplifies

to

qi (℘i, ℘
?) =

1

N
+
p? − Λ (α?)− (pi − Λ (αi))

t
.

In a symmetric equilibrium, the first-order conditions associated with Pi’s maximization problem

yield a price p? (N) = t
N and a precision α? (N) that solves

1

N

∂Λ (αi)

∂αi
− c′ (αi) = 0. (10)

It can be verified that α? (N) is decreasing in N – i.e., the larger the number of providers, the

lower the probability that each is patronized, thereby reducing the incentive to invest in precision.

Consider now value maximization. Using the same logic as before, we have

V (α) , 1

2

∑
s

[f (x? (s, α))− x? (s, α)] +
µ

2

∑
s

Pr [s|θ = 1]x? (s, α)− t

4N
−Nc (α) .

The derivative of this function leads to the same prediction as in the baseline model: providers

either under-invest or over-invest in precision, depending on whether the concavity index of the

revenue function is decreasing or increasing. Therefore, with an exogenous number of providers, the

policy implications of the baseline model remain valid.

Endogenous entry. Suppose that providers must pay a fixed set-up cost F > 0 to enter the

market. The timing of the game changes only with respect to the entry stage. At the outset of

the game, providers enter the information market and locate equidistantly along the Salop circle.27

The game then unfolds as before.

While the first-order conditions with respect to prices and precision levels remain unchanged

27As standard, we treat N as a continuous variable.
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with respect to the above analysis, the number N? of providers that enter the market when there

is no regulatory oversight is determined by the following zero-profit condition

t

N2
− c (α? (N))− F = 0,

with N? ≥ 2 for F suffi ciently small. Let α? (N?) = α? and p? (N?) = p? be the equilibrium values

of precision and price, respectively.

Focus now on value maximization. Let p be the price mandated by the regulator. Given this

price, the two conditions that identify the number of active providersN? (p) and the level of precision

α? (p) that they supply, are the free-entry condition and the first-order condition with respect to

precision – i.e.,
p

N
− c (α)− F = 0, (11)

1

t

∂Λ (α)

∂αi
p− c′ (α) = 0. (12)

Notice that (12) does not depend on N and the second-order condition implies that α? (p) is in-

creasing in p. The first condition (free-entry) then implies

N (p) , p

c(α(p)) + F
⇒ N ′ (p) =

c(α(p)) + F − pc′(α(p))α′(p)

[c(α(p)) + F ]2
.

This means that an increase in the rating price has an ambiguous effect on entry. On one hand,

a higher price enhances profit margins, which can stimulate entry by making the market more

attractive to new providers. On the other hand, a higher price leads competing providers to supply

greater precision, which either reduces a given provider’s market share or forces this provider to

supply greater precision, which is costly. The increased certification cost can deter new entrants

from joining the market. The net effect of a price increase on entry depends on the balance between

these two opposing forces: the allure of higher potential profits and the discouragement of a higher

cost of providing a rating.

Hence, as in the Hotelling model with a partially covered market, endogenous entry introduces

additional dynamics that – beyond the role of the curvature of the revenue function – depend on

how an increase in price affects transport costs, fixed costs, and certification costs. At a given p,

expected total value is

V (α (p) , N (p)) , 1

2

∑
s

[f (x? (s, α (p)))− x? (s, α (p))] +

µ

2

∑
s

Pr [s|θ = 1, α (p)]x? (s, α (p))− t

4N (p)
−N (p) (c (α (p)) + F ) .

An increase (resp. reduction) in the number of providers induced by an increase in the price has

two direct effects on social costs: it reduces (resp. increases) the lender’s transport cost, but at the
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same time it also increases (resp. reduces) certification and fixed entry costs. In an equilibrium

with free entry, providers do not internalize this effect, leading to the classical excessive entry result

(see, e.g., Polo, 2018, for a discussion of entry models and excess entry).

We can state the following.

Proposition 8 The derivative of the project’s value with respect to p evaluated at the equilibrium
price p? and precision α? is

dV (α?, N?)

dp
=

φµ

2 (1− φ)

[
1

ζ (x? (1, α?))
− 1

ζ (x? (0, α?))

]
α′ (p?)− 3t

4N?2
N ′ (p?) .

Hence, compared to the case with exogenous entry, in an equilibrium with free-entry, a price floor

is relatively more likely to be socially optimal if N (p?) is decreasing in p?, otherwise a price-cap is

relatively more likely to maximize value.

With endogenous entry, the justification for a price floor becomes more compelling when the

dominant effect on entry is the increase in certification costs. Essentially, a rise in price tends to

increase certification costs, which leads to fewer providers entering the market. This effect mitigates

the traditional excessive entry problem. Conversely, in cases where the prevailing effect on entry is

an increase in profit margins, a rise in price encourages more entrants, exacerbating the excessive

entry dynamics, making a price cap relatively more desirable.

4.4 The issuer-pay model

To contrast our results with a traditional rating agency framework, we now consider the opposite

scenario of an issuer-pay model. With this business model, E pays the providers for the information

that L uses to make its investment decisions. The rest of the game remains as in the baseline model

with three important caveats. First, we assume that the lender can observe the information policies

offered by the two raters. Second, to avoid signaling issues that will be discussed later, we assume

that E does not know the project type when it requests a rating, and the rating becomes public

when issued. Third, E instead of L is now located on the Hotelling line between the providers. As

in the baseline model, we focus on an equilibrium with full market coverage and single-homing.

The optimal loan size in a symmetric equilibrium with a covered market and single-homing

remains x?(si, αi). Therefore, the profit of an entrepreneur with a type-θ project is

πi (αi, pi, θ) , φ
∑
si

Pr [si|θ, αi] f (x? (si, αi))− pi − tdi

=


φ [αif (x? (1, αi)) + (1− αi) f (x? (0, αi))]− pi − tdi

φ [(1− αi) f (x? (1, αi)) + αif (x? (0, αi))]− pi − tdi

if θ = 1

if θ = 0

.
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Hence, its expected utility is

πi (αi, pi) ,
∑
θ

Pr [θ]πi (αi, pi, θ) =
φ

2

∑
si

f (x? (si, αi))− pi − tdi

The indifferent entrepreneur is located at

z (℘0, ℘1) , 1

2
+
p1 − p0

2t
+ φ

∑
s0
f (x? (s0, α0))−

∑
s1
f (x? (s1, α1))

4t

which, again, equals the probability with which E patronizes P0.

Focusing again on a symmetric equilibrium in which both providers offer policy ℘∗ , (α∗, p∗),

provider P0 solves the following problem:

max
℘0

z (℘0, ℘
∗) p0 − c (α0) .

When the market is covered, the first-order condition with respect to p0 yields again the standard

Hotelling pricing rule p∗ = t. The first-order condition with respect to α0 is again

∂z (℘0, ℘
∗)

∂α0
p0 − c′ (α0) = 0, (13)

where now
∂z (℘0, ℘

∗)

∂α0
=

φµ

4t (1− φ)

[
1

ζ (x? (1, α0))
− 1

ζ (x? (0, α0))

]
,

which is positive if ζ ′ (x) < 0 for every x ≥ 0, and negative if ζ ′ (·) > 0, because x? (1, α) > x? (0, α).

The following then holds:

Proposition 9 Suppose that E is uninformed when it chooses the information provider (or, alter-

natively, that it is informed but the game features a pooling equilibrium) and that both providers

operate under an issuer-pay business model. Then, under laissez-faire, a symmetric equilibrium

with full coverage and single-homing features a price p∗ = t and a level of information precision

α∗ ∈ (0, 1) if ζ ′ (x) < 0 for every x ≥ 0. In this case, α∗ solves

φµ

4 (1− φ)

(
1

ζ (x? (1, α))
− 1

ζ (x? (0, α))

)
= c′ (α∗) ,

and is increasing in µ and φ. By contrast, if ζ ′ (x) ≥ 0 for every x ≥ 0, then both providers supply

uninformative signals, and the lender makes an uninformed choice, which may be to not finance the

project (market collapse).

Value maximization mandates a higher level of precision than the level of precision that emerges

with laissez-faire. Hence, from a regulatory point of view, a price floor that induces providers to

price above t is always optimal.
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Under the issuer-pay model, providers are reluctant to supply informative ESG ratings when the

revenue function features IARA. In this case, ratings become uninformative because, as explained

above, providers internalize the fact that increased precision benefits the revenues of a type θ = 1

project less than it reduces the revenues of a type θ = 0 project. As a result, E’s expected utility,

and the demand for ratings, decreases with precision, leading to rating degradation and uninformed

investment decisions by L, or even to market collapse (i.e., the project is not financed). Conversely,

when the marginal revenue is DARA, providers sell informative signals, but this level of precision

is ineffi ciently low from a value maximization point of view, because profit maximization under

the issuer-pay model does not consider L’s expected utility, which benefits from greater precision.

Thus, under an issuer-pay model, the optimal regulation invariably requires a price floor, and never

a price cap.

Remark. In the above analysis, we assumed that E is uninformed about the project type at the

stage in which it requests a rating. However, how would the results change if E learns θ before

requesting a rating? In this case, the nature of the game becomes more complex: the equilibrium

concept must account for the fact that E has private information. Hence, its rating acquisition

decisions might signal this information. Since the game is sequential, the effectiveness of this

information transmission depends on how L’s beliefs are formed off the equilibrium path. For this

reason, the appropriate equilibrium concept is weak Perfect Bayesian Equilibrium (weak PBE). As

in any signaling game, the equilibrium set can be quite large – there can be separating, pooling,

and semi-separating equilibria. Pooling equilibria are easy to characterize and are sustained by off-

equilibrium beliefs such that given a candidate equilibrium ℘?, when a provider deviates from this

policy and E buys a rating from the deviator, L assigns the same probability to both project types

before seeing the rating. With such an off-path belief, the equilibrium characterization remains as

above, since E’s action of accepting an off-equilibrium policy does not signal anything to L.

By contrast, separating equilibria are less straightforward to characterize. This is because any

such equilibrium must necessarily be asymmetric in the sense that raters must specialize in rating

different projects – e.g., P0 rates only type-0 projects and P1 rates only type-1 projects. However,

in addition to the standard incentive compatibility constraint for the entrepreneur – i.e., an entre-

preneur with a type 0 project must not want to mimic the behavior of an entrepreneur with a type

1 project, and vice-versa – raters must not have an incentive to deviate to offering a policy that

attracts all project types (a logic similar to the seminal work by Rothschild and Stiglitz, 1978). In

addition, in these equilibria where information unravels, there is no need for L to gather information,

which makes the entrepreneur’s mimicking incentive even stronger. Examining these additional as-

pects deserves attention on its own. Yet, since the focus of this paper is the subscriber-pay model,

we leave such an analysis for future research.
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5 Concluding remarks

ESG ratings are crucial for guiding investments towards sustainable practices. Yet, they face chal-

lenges, such as potential conflicts of interest and transparency issues, similar to traditional credit

ratings. Regulatory interventions can sometimes mitigate these problems, particularly concerning

the relationship between raters’revenues and the entities they evaluate. Despite the fact that the

majority of ESG raters adopt a subscriber-pay model, which should reduce the potential for conflicts

of interest compared to an issuer-pay model, the question remains as to whether this is suffi cient to

ensure the effectiveness of ESG ratings, or if additional regulatory measures are necessary to sup-

port truly sustainable investment decisions. Our analysis provides a first answer to this question.

We show that regulatory measures, such as price floors and price caps, can be useful in ensuring

the effectiveness of ESG ratings, but only if they are well designed. These measures address market

ineffi ciencies where information precision may be under-supplied or over-supplied relative to what

would maximize value. In particular, we find that when the market is under-supplying rating in-

formation precision, a price floor should be considered, and when the market over-supplies rating

precision, a price cap should instead be considered. Our findings indicate that indiscriminate impo-

sition of price controls, such as universal price caps or floors, can significantly reduce overall value

and welfare. This emphasizes the need for nuanced regulatory strategies tailored to specific market

conditions.
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Appendix

Proof of Lemma 1. Conditional on signal si and precision αi ≥ 1
2 , the lender’s first order condition

is

(1− φ) f ′ (x)− 1 + µE [θ|si, αi] = 0 ⇔ x?(si, αi) , ϕ
(

1− µE [θ|si, αi]
1− φ

)
,

with

E [θ|si, αi] =

{
αi

1− αi
if si = 1,

if si = 0.

Hence, f ′′ (·) < 0 and αi ≥ 1
2 immediately imply x

? (1, αi) ≥ x? (0, αi) > 0. Furthermore,

∂x? (1, αi)

∂αi
= − µ

1− φ
1

f ′′ (x?(1, αi))
> 0 >

∂x? (0, αi)

∂αi
=

µ

1− φ
1

f ′′ (x?(0, αi))
. �

Proof of Lemma 2. From the first-order condition (2), and p∗ = t, ∂z(·)∂p = − 1
2t , we have

∂α̂0 (p0)

∂p0
= −

µx
?(1,α0)−x?(0,α0)

4t

µ µ
1−φ

− 1
f ′′(x?(1,α0))

− 1
f ′′(x?(0,α0))

4t p0 − c′′ (α0)

= − x? (1, α0)− x? (0, α0)

− µ
1−φ

(
1

f ′′(x?(1,α0)) + 1
f ′′(x?(0,α0))

)
t− 4t

µ c
′′ (α0)

,

which is positive, because we assumed that c′′ (·) is suffi ciently large and f (·) has a bounded third-
order derivative. Finally, limp0→0 α̂0 (p0) = 1

2 follows directly from (2) and the bounded ∂z(·)
∂α0

. �

Proof of Proposition 1. To begin with, notice that p? = t is an immediate solution of condition
(1) when the providers offer symmetric policies. The condition that pins down α?, instead, follows
from (2), whose solution lies in the interval

[
1
2 , 1
]
from the Inada conditions and the fact that

x? (1, α?) > x? (0, α?). Strict concavity of the provider’s profit function in α0 then implies the
comparative statics with respect to µ and φ.

Finally, to show that the market is covered and the lender single-homes, note that L’s expected
utility when located at 1

2 is

1

2

∑
si

[
(1− φ)f (x? (si, α

?))− x? (si, α
?) +

µ

2
Pr [θ = 1|si, α?]x? (si, α

?)
]
− t

4
− t = Λ (α?)− 5

4
t.

Taking the difference with û, the lender prefers to purchase information if and only if

Λ (α?)− û > 5t

4
. (A1)

Suppose now that the lender deviates from the equilibrium with single-homing and purchases
both signals. Assuming that L has observed signals (s0, s1), it solves the following maximization

31



problem
max
x≥0

(1− φ) f(x)− x+ µxE [θ|s0, s1, α
?, α?] .

By Bayes’rule, we have

Pr [θ = 1|1, 1, α?, α?] =
α?2

α?2 + (1− α?)2
, Pr [θ = 1|0, 1, α?, α?] =

1

2
,

Pr [θ = 1|1, 0, α?, α?] =
1

2
, Pr [θ = 1|0, 0, α?, α?] =

(1− α?)2

(1− α?)2 + α?2
.

In an interior solution, L’s investment decision is

x?(s0, s1, α
?, α?) = ϕ

(
1− µPr [θ = 1|s0, s1, α

?, α?]

1− φ

)
,

where ϕ (·) is the inverse of f ′ (·). Notice that

x?(0, 1, α?, α?) = x?(1, 0, α?, α?) = x̂.

Without accounting for the service price and the transport cost, the lender’s expected benefit
of acquiring two ratings is

Λ (α?, α?) , α?2 + (1− α?)2

2
[f(x?(1, 1, α?, α?))− x?(1, 1, α?, α?)] +

α?2µ

2
Pr [θ = 1|1, 1, α?, α?]x?(1, 1, α?, α?) + 2α?(1− α?)û+

α?2 + (1− α?)2

2
[f(x?(0, 0, α?, α?))− x?(0, 0, α?, α?)] +

(1− α?)2µ

2
Pr [θ = 1|0, 0, α?, α?]x?(0, 0, α?, α?),

with Λ (α?, α?) > Λ (α?) because, other things being equal, acquiring more information is always
better for the lender.

Hence, the lender prefers to single home if and only if

Λ (α?)− t

4
> Λ (α?, α?)− t ⇔ 3t

4
> Λ (α?, α?)− Λ (α?) . (A2)

Summing up, conditions (A2) and (A1) yield

4 (Λ (α?)− û)

5
> t >

4 (Λ (α?, α?)− Λ (α?))

3
. (A3)

Notice that α?, Λ (α?) and Λ (α?, α?) do not depend on t. Furthermore, at α? = 1, the condition
(A3) never defines an empty set, because Λ (1) > û and Λ (α?, α?) = Λ (α?). Hence, by continuity,
it must hold for α? close to 1, which occurs if c′(·) is small enough. The rest of the proof follows
immediately. �
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Concavity of the project’s value. To show concavity of the value function, notice that in a
symmetric equilibrium,

V ′′ (α) = − µ2

2(1− φ)

[
1

f ′′(x? (1, α))
+

1

f ′′(x? (0, α))

]
− 2c′′ (α) +

φµ2

2 (1− φ)2

[
[f ′′(x?(1,α))]2−f ′(x?(1,α))f ′′′(x?(1,α))

[f ′′(x?(1,α))]3
+ [f ′′(x?(0,α))]2−f ′(x?(0,α))f ′′′(x?(0,α))

[f ′′(x?(0,α))]3

]
.

If f ′ (·) , f ′′ (·) and f ′′′ (·) are bounded away from zero and infinity, and c′′ (·) is large enough, then
V ′′ (α) < 0.

Proof of Proposition 2. Evaluating (3) at the laissez-faire α? we have

V ′ (α?) =
φµ

2 (1− φ)

[
1

ζ (x? (1, α?))
− 1

ζ (x? (0, α?))

]
,

which, for φ > 0, yields immediately the result since x? (0, α?) < x? (1, α?). The result is trivial at
φ = 0. �

Proof of Proposition 3. The first part of the proof follows immediately from the fact that the
function α̂ (p) is increasing and from the results stated in Proposition 2. The second part of the
proof follows immediately by comparing p?? and p? and noticing that this difference is proportional
to t. �

Proof of Proposition 4. The fact that p0 (α0) is increasing in α0 follows immediately from

Λ′ (α0 (p)) = µ
x? (1, α0 (p))− x? (0, α0 (p))

2
> 0.

The fact that α0 (p0) is increasing in p0 follows from the assumption that c (·) is suffi ciently convex,
so P0’s objective function is concave in α0 (the SOC holds), and the fact that the term

p0
1√

t
√

Λ (α0)− û− p0

is increasing in p0.
The equilibrium conditions are derived by substituting the equilibrium price into the first-order

condition with respect to α0 evaluated at a symmetric equilibrium. To ensure that the lender
equidistant between the providers does not buy a rating, note that Λ (α?) > û and by definition

z? ,
√

Λ (α?)− û
3t

.

If α? is close to 1
2 , then z

? is close to 0, because Λ
(

1
2

)
= û and Λ (·) is continuous. Intuitively,

almost nobody buys ratings that are nearly uninformative. Of course, α? is endogenous, but if c′ (·)
is large enough (rating precision costly enough), then α? is close to 1

2 . In this case, the lender never
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wants to multi-home irrespective of its location – i.e.,

Λ (α?, α?)− 2p? − t < Λ (α?)− p? − z?2t = û ⇒ Λ (α?, α?)− û− 4

3
(Λ (α?)− û) < t,

which is always satisfied at α? = 1
2 , since Λ (α?, α?) = Λ (α?) = û, and hence by continuity it holds

for α? suffi ciently close to 1
2 . �

Proof of Proposition 5. On each half of the Hotelling line, we have

V (p)

2
,
∫ z?(p)

0

[
Λ (α (p))− tz2

]
dz+

∫ 1
2

z?(p)
ûdz−c (α (p))+

∫ z?(p)

0

1

2

∑
s

φf (x? (s, α (p))) dz+

∫ 1
2

z?(p)
φf (x̂) dz,

which simplifies to

V (p)

2
= z? (p) Λ (α (p))− t(z

? (p))3

3
+

[
1

2
− z? (p)

]
û−c (α (p))+z? (p)

φ

2

∑
s

f (x? (s, α (p)))+

[
1

2
− z? (p)

]
φf (x̂) .

Differentiating and using (6),

V ′ (p)
2

=

[
p− φf (x̂) +

φ

2

∑
s

f (x? (s, α (p)))

]
dz? (p)

dp
+ Λ′ (α (p))α′ (p) z? (p)

+
φµ

2(1− φ)

[
1

ζ(x? (1, α (p)))
− 1

ζ(x? (0, α (p)))

]
α′ (p) z? (p)− c′ (α (p))α′ (p) .

Evaluating V ′ (p) at p?, the result follows immediately. �

Proof of Lemma 3. The inequality

Λ (α0, α
?) ≥ max {Λ (α0) ,Λ (α?)} ,

follows from a straightforward revealed preference argument: if the additional information that the
lender buys is useless, then the lender can always ignore it. However, for α0 >

1
2 and α

? > 1
2 , the

lender will never ignore a rating. In fact, it is easy to show that x?(s0, s1, α0 = 1
2 , α

?) = x?(s1, α
?)

for every α? ≥ 1
2 (and vice-versa). If one of α0, α

? equals 1, then the lender already gets perfect
information from that, so the other rating adds nothing.

The fact that x?(s0, s1, α
?, α?) > 0 if and only if s0 = s1 = 1 is a direct consequence of

assumption (8): if the lender does not invest at the prior, a fortiori it will not invest when receiving
two bad signals. �

Proof of Proposition 6. The conditions that identify the symmetric equilibrium p? and α? are
immediate to obtain from the providers’first-order conditions. Existence, instead, requires first
that

z?+ =
Λ (α?, α?)− Λ (α?)

2t
∈
(

1

2
, 1

)
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that is,
Λ (α?, α?)− Λ (α?) > t,

which also implies that z?+ > z?−, and

Λ (α?, α?)− Λ (α?)

2
< t.

Furthermore, the lender must not want not deviate. There are two types of deviations: (i) a
lender that is supposed to purchase two ratings in equilibrium decides to buy only one; (ii) a lender
that is supposed to buy only one rating in equilibrium decides to buy both.

Consider the first type of deviation. Focus, without loss of generality, on the first half of the
Hotelling segment. Notice that, by construction

Λ (α?, α?)− 2p? − t = Λ (α?)− p? − z?−t (A4)

Hence, for every z < z?−, we have

Λ (α?, α?)− 2p? − t < Λ (α?)− p? − z?−t.

By symmetry, the same applies to the second half of the Hotelling segment. Mutatis-mutandis,
equality (A4) also implies that the second type of deviation is not profitable. Hence, existence
simply requires

Λ (α?, α?)− Λ (α?)

2
< t < Λ (α?, α?)− Λ (α?) ,

which always defines a non-empty set for every α? ∈
(

1
2 , 1
)
. �

Proof of Proposition 7. Assuming that the price dictated by the regulator does not alter the
characteristics of the equilibrium – i.e., that sellers located in the middle of the Hotelling line
multi-home while those located at the periphery single-home, the total expected value is

V (p) ,
∫ z−(p)

0
(Λ1 (p)− tz) dz + (Λ2 (p)− t)

∫ z+(p)

z−(p)
dz +

∫ 1

z+(p)
(Λ1 (p)− t (1− z)) dz − 2ĉ (p) .

Differentiating with respect to p yields

V ′ (p) = (Λ1 (p)− tz− (p))
dz− (p)

dp
+ z− (p)

dΛ1 (p)

dp
+

(
dz+ (p)

dp
− dz− (p)

dp

)
(Λ2 (p)− t) +

(z+ (p)− z− (p))
dΛ2 (p)

dp
− (Λ1 (p)− t (1− z+ (p)))

dz+ (p)

dp
+ (1− z+ (p))

dΛ1 (p)

dp
− 2 ĉ′ (p) .

Using the fact that

z?+ (p) = 1− z?− (p) =
Λ (α (p) , α (p))− Λ (α (p))− p

t
,
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the above simplifies to

V ′ (p) = −2 [Λ1 (p)− t (1− z+ (p))− (Λ2 (p)− t)] dz+ (p)

dp
+

2 (1− z+ (p))
dΛ1 (p)

dp
+ (2z+ (p)− 1)

dΛ2 (p)

dp
− 2c′ (α)α′ (p) .

where, by the Envelope Theorem,

dΛ1 (p)

dp
=
µ

2
x? (1, α (p))α′ (p) > 0,

dΛ2 (p)

dp
=

2α (p)− 1

2
[f(x?(1, 1, α (p) , α (p)))−x?(1, 1, α (p) , α (p))]α′(p)+

µα (p)

2
x?(1, 1, α (p) , α (p))α′(p) > 0.

and
dz+ (p)

dp
, 1

t

(
dΛ2 (p)

dp
− dΛ1 (p)

dp
− 1

)
.

Evaluating this condition at p?, then we have

V ′ (p?) = 2
(
Λ2 (p?)− t−

(
Λ1 (p?)− t

(
1− z?+

)))︸ ︷︷ ︸
=p?

dz+ (p?)

dp

+2
(
1− z?+

) dΛ1 (p?)

dp
+
(
2z?+ − 1

) dΛ2 (p?)

dp
− 2c′ (α?)α′ (p?) .

Hence, defining x11 = x?(1, 1, α (p) , α (p)) and using the providers’first-order condition

1

t

∂Λ (α0, α
?)

∂α0
p0 = c′ (α0) ,

we have

V ′ (p?) = 2
p?

t

[
2α (p?)− 1

2
[f(x11)− x11]α′?) +

µα (p?)

2
x11α

′?)− µ

2
x? (1, α (p?))α′ (p?)− 1

]
+

2
(
1− z?+

) µ
2
x? (1, α (p?))α′ (p?) +

(
2z?+ − 1

) 2α? (p?)− 1

2
[f(x11)− x11]α′?)+

µα (p?)

2
x11α

′?)− 2
p?

t

dΛ (α?, α?)

dp?

= 2
p?

t

[
−µ

2
x? (1, α (p?))α′ (p?)− 1

]
+

2
(
1− z?+

) µ
2
x? (1, α (p?))α′ (p?) +

(
2z?+ − 1

) 2α? (p?)− 1

2
[f(x11)− x11]α′?) +

µα (p?)

2
x11α

′?),

which concludes the proof. �
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Proof of Proposition 8 Differentiating the value function V (α (p) , N (p)) with respect to p,

dV (α (p) , N (p))

dp
=

(
µ
x? (1, α (p))− x? (0, α (p))

2
−N (p) c′ (α (p))

)
α′ (p) +

φµ

2 (1− φ)

[
1

ζ (x? (1, α (p)))
− 1

ζ (x? (0, α (p)))

]
α′ (p) +

t

4N (p)2N
′ (p)−N ′ (p) (c (α (p)) + F ) .

Evaluating at p? the above condition, we then have

dV (α?, N?)

dp
=

φµ

2 (1− φ)

[
1

ζ (x? (1, α?))
− 1

ζ (x? (0, α?))

]
α′ (p?) +N ′ (p?)

(
t

4N?2
− (c (α?) + F )

)
.

Using the zero profit condition t
N?2 − c (α?)− F = 0, we then have

dV (α?, N?)

dp
=

φµ

2 (1− φ)

[
1

ζ (x? (1, α?))
− 1

ζ (x? (0, α?))

]
α′ (p?)− 3t

4

N ′ (p?)

N?2
,

which completes the proof. �

Proof of Proposition 9. The equilibrium condition

φµ

4 (1− φ)

(
1

ζ (x? (1, α))
− 1

ζ (x? (0, α))

)
= c′ (α∗) ,

can be obtained immediately from the providers’first-order condition. Hence, α? = 1
2 if and only if

1

ζ (x? (1, α))
≤ 1

ζ (x? (0, α))
,

which is always the case if ζ ′ (x) ≥ 0 for every x ≥ 0, because x? (1, α) > x? (0, α).
Consider now value maximization. As in the baseline model, expected value is

V (α) , 1

2

∑
s=0,1

[f (x? (s, α))− x? (s, α)] +
µ

2

∑
s=0,1

Pr [s|θ = 1]x? (s, α)− 2c (α)− t

12
,

whose derivative evaluated at α? (i.e., substituting in the FOCs of E and L) yields

V ′ (α?) = µ
x? (1, α?)− x? (0, α?)

2
> 0,

which completes the proof. �
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